
NASA Contractor Report 198241

ICASE Report No. 95-80

/IJ--_ /

ICA

EXPERIMENTS IN AUTOMATED

LOAD BALANCING

Linda E Wilson

David M. Nicol

NASA Contract No. NAS1-19480

November 1995

Institute for Computer AppIications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

Experiments in Automated Load Balancing*

Linda F. Wilson

Institute for Computer Applications in Science and Engineering

Mail Stop 132C

NASA Langley Research Center

Hampton, Virginia 23681

David M. Nicol

Department of Computer Science

The College of William and Mary

P. O. Box 8795

Williamsburg, Virginia 23187

Abstract

One of the promises of parallelized discrete-event simulation is that it might provide signif-

icant speedups over sequential simulation. In reality, high performance cannot be achieved

unless the system is fine-tuned to balance computation, communication, and synchroniza-

tion requirements. As a result, parallel discrete-event simulation needs tools to automate

the tuning process with little or no modification to the user's simulation code.

In this paper, we discuss our experiments in automated load bMancing using the SPEEDES

simulation framework. Specifically, we examine three mapping algorithms that use run-time

measurements. Using simulation models of queuing networks and the National Airspace

System, we investigate (i) the use of run-time data to guide mapping, (ii) the utility of

considering communication costs in a mapping algorithm, (iii) the degree to which computa-

tional "hot-spots" ought to be broken up in the linearization, and (iv) the relative execution

costs of the different algorithms.

*This work was supported by the National Aeronautics and Space Administration under NASA Contract

No. NAS1-19480 while the authors were in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001. Nicol was also
supported by NSF grant CCR-9201195.

1 Introduction

Discrete-event simulation can be used to examine a variety of performance-related issues

in complex systems. Parallel discrete-event simulation (PDES) offers the potential for

significant acceleration of solution time over sequential simulation. Unfortunately, high

performance is often achieved only after rigorous fine-tuning is used to obtain an efficient

mapping of tasks to processors. In practice, good performance with minimal effort is often

preferable to high performance with excessive effort.

In a typical PDES, components of the system under examination are mapped into logical

processes (LPs) that can execute in parallel. The LPs are distributed among the physical

processors, and communication between LPs is accomplished by passing messages. There
is a tension between distribution for load balance and distribution for low communication

costs. If LPs are distributed among the processors such that interprocessor communication

is kept low, some processors may sit idly waiting for something to do while others are

overloaded with work. At the other extreme, a "perfectly-balanced" workload may induce

high communication costs. Thus, load-balancing strategies must find a compromise between

distributing work evenly and minimizing communication costs.

In earlier work [8], we described our early experiences in developing an automated load-

balancing strategy for the SPEEDES simulation environment. In this paper, we discuss

experiments with three different mapping algorithms used in conjunction with our automated

scheme. Section 2 presents background material on SPEEDES while Section 3 describes the

load-balancing methodology and the three mapping algorithms. Section 4 presents results

from two models simulated on the Intel Paragon and compares the execution times obtained

by the models' default partitionings with those obtained by the different mapping algorithms.

Section 5 discusses the issue of mapping algorithms' execution times. Section 6 presents our

conclusions.

2 SPEEDES

SPEEDES (Synchronous Parallel Environment for Emulation and Discrete-Event Simula-

tion) is an object-oriented simulation environment that was developed at the Jet Propulsion

Laboratory [5]. Designed for distributed simulation, SPEEDES supports multiple synchro-

nization strategies (including Time Warp, Breathing Time Buckets, and Breathing Time

Warp) that can be selected by the user at run time. In addition, SPEEDES provides a se-

quential simulation mode (with most of the parallel overhead removed) so that a particular

simulation model can be executed serially or in parallel.

Developed using C ++, SPEEDES uses an object-oriented computational model. The

user builds a simulation program by defining simulation objects, object managers for those

objects, and events. An object manager class must be defined for each type of corresponding

simulation object. For example, in the SPEEDES model of the National Airspace System,

an airport object class (AIRPORT_OBJ) must have a corresponding airport manager class

(AIRPORT_MGR). The object managers are responsible for creating and managing the set

of simulation objects. Thus, the user (through the object managers) is completely responsible

for the mapping of the simulation objects to the processors.

While SPEEDES gives the user freedom to choose an appropriate mapping, it is quite

likely that the user does not know a priori how to choose a good allocation of objects to

processors. Most variations of the mapping problem are computationally intractable, so

optimal mappings are extremely difficult to obtain. Furthermore, many users and potential

users of PDES would prefer to let "the system" make such decisions, especially if the re-

suiting performance is "good enough". In the next section, we present our methodology for

automated load balancing in SPEEDES.

3 Automated Load Balancing

As discussed in [8], we modified SPEEDES to collect data on the workload characteristics

of a simulation. Since each event is connected to exactly one simulation object, simulation

objects determine the resolution of the partitioning. Thus, we collect computation data

(number of events processed) for each object and communication data (number of messages

sent) for each pair of simulation objects. The event and message counts are collected and

saved in data files during a single run of the simulation. Ultimately, we will use this data to

govern dynamic load balancing based on run-time information. In this report, we investigate

the suitability of different algorithms for balancing computation and communication, with

the expectation of embedding suitable candidates into a dynamic load-management system.

Thus, at present, SPEEDES is instructed to collect the data (for one run) and use the data (in

another run) through the use of run-time flags. The data is analyzed by a mapping algorithm

that determines the load-balancing allocation of simulation objects to processors. In this

paper, we experiment with three different mapping algorithms to examine the effectiveness

of using run-time measurements in our automated load-balancing scheme. We also consider

the execution costs of the algorithms themselves.

The first algorithm (LBallocl) determines object placement based only on the com-

putation weight of each object. Specifically, we use the longest-processing-time-first list

scheduling algorithm in which the objects are ordered by decreasing computation weight

and the heaviest unplaced object is placed on the processor with the lightest cumulative

weight [1]. Notice that this approach concentrates on balancing the workload on the proces-

sors but ignores communication costs.

The second algorithm (LBalloc2, from [3]) arranges the LPs in a linear chain and then

partitions the chain into as many contiguous subchains as there are processors, mapping

one subchain per processor. The partition chosen minimizes the amount of work assigned to

the most heavily-loaded processor, where the computation weight of a processor is the sum

of measured computation weights of its LPs, and the computation weight of an LP is the

number of committed events it executed. Given a linear ordering, this optimization problem

can be solved very quickly, e.g. in O(PM log M) time, where P is the number of processors
and M the number of LPs.

However, choice of an optimal linearization of LPs is computationally intractable; choice

of a "good" linearization remains an open research problem. One idea (used in LBalloc2) is to

linearize so as to keep heavily communicating LPs close to each other in the chain, thereby

increasing the chance that they will be assigned to the same subchain. This intuition is

realized by a recursive heuristic which at the first step "pairs" LPs using a stable matching

algorithm. Here the communication weight between two LPs is a measure of their attraction;

a stable matching is one where if A and B are matched, and C and D are matched, it is

not possible to break the matches and reassemble (e.g. A and C, B and D) and have higher

attraction values for both matchings. Two LPs that are matched will be adjacent to each

other in the linear ordering. We then merge matched LPs into super-LPs and compute the

attraction between two super-LPs as the sum of the attractions between LPs in the two

super-LPs. Matching these, the sets of LPs represented in two matched super-LPs will be

adjacent to each other in the linear ordering. This process continues until there is a single

super-LP.

Using the communication weight between LPs as the base attraction function is suitable

as long as there is only weak correlation between the communication between two LPs and

their computation weights. However, many simulations have "hot spot" simulation objects

that perform most of the work. Typically, the hot spots have large amounts of communication

with other hot spots. Use of the communication weight as the attraction function can cluster

the hot spots together, which results in poor load balancing.

For the third mapping algorithm (LBalloc3), we modified the linear chaining algorithm to

discourage clustering of extremes: pairs of very heavy objects or pairs of very light objects.

Specifically, the attraction (communication weight) between each pair of objects is scaled by

a Gaussian function based on the pair's computation weight, relative to the weights of the

other pairs (with non-zero attractions). The scaling function has a value of one corresponding

to the mean computation weight for all pairs with non-zero communication weights. The

spread of the Gaussian corresponds to the variance of the paired computation weights. For

example, Figure l(a) shows a plot of first-round communication and computation weights

for all pairs with non-zero communication weights.* Figure l(b) shows the corresponding

scaling function, and Figure l(c) shows the resulting scaled communication weights. Notice

that this scaling will encourage pairings in which the resulting paired computation weight

will be close to the mean while it discourages pairings far from the mean.

While the automated load-balancing scheme can use any of the mapping algorithms to

determine the allocation of simulation objects to processors, the SPEEDES user must choose

to use that allocation when objects are created by the object managers. To assist the user, we

added three functions to SPEEDES: LB_is_avail (), is_local_obj ect (obj hum), and is_-

local_obj ect (objname). The LB_is_avail () While the automated load-balancing scheme

can use any of the mapping algorithms to determine the allocation of simulation objects to

processors, the SPEEDES user must choose to use that allocation when objects are created

by the object managers. To assist the user, we added three functions to SPEEDES: LB_is_-

avail (), is_local_obj ect (objnum), and is_local_obj ect (objname). The LB_is_avail ()

function is used to determine if the load-balancing data is available for use during this run

(i.e. it was collected during a previous run). Thus, the user can write an object manager

that uses a default mapping if data is not available and the load-balanced mapping if it is.

The is_local_obj oct (objnum) function is used to determine if the simulation object with

global ID number objnum should be created on this node while is_local_obj ect (objname)

*This data comes from the DPAT algorithm, discussed in Section 4.

700

"_ 600
r_

500

"_ 400

.o 300

200

o 100

i i i v I i i

i Mean o
l

O**! o

_ i OO

1 $ _ o° o

i_.L. _,_m',o__o • ** °
_*'_A_X # -0o

0 2000 4000 6000 8000 10000 12000

Computation Weight for Pair

(a) Original Data

e,0

= 0.8
O

-,_

_ 0.6

O

_ 0.4

o

0.2

_ 0

I caling Functton

11 t _ , t
2000 4000 6000 8000 10000 12000

Computation Weight for Pair

(b) Gaussian Scaling Function

700

_ 600

._ 500

= 400
@

-iI 300
200

100

0

i

Mean

"o

2000 4000 6000 8000 10030 12000

Computation Weight for Pair

(c) Scaled Data

Figure l: Scaling Communication Weights for the LBalloc3 Algorithm

4

providesthe sameinformation basedon a user-definedobject name. Notice that the auto-
mated mapping will be inappropriate unlessthe global ID numbers and object namesare
consistentfrom one run to the next.

4 Results

We applied the three mappings in our automated load-balancing system to two simulation

models: a fully-connected queuing network and the DPAT model of the National Airspace

System [7]. In this section, we discuss the two models and present results from execution of

the simulations on a 72-node Intel Paragon. Furthermore, we compare the results obtained

from the three automated mappings with those obtained from the default partitioning.

4.1 Qnet Simulation

Queuing networks are often used as PDES benchmarks because they are commonly used in

simulation studies, are relatively easy to program, and yet exhibit many of the difficulties

experienced by more complex models[2, 6]. Thus, we are in good company using a fully-

connected queuing network (Qnet) as the first test of our automated load-balancing system.

The Qnet simulation contains 1600 fully-connected servers. Since a homogeneous network

of queues is balanced naturally without sophisticated algorithms, we study a deliberately

unbalanced network. We define 50 servers to be "hot spots", where the probability that a

customer exiting a server goes next to a hot spot is 0.15. Furthermore, we give each server a

neighborhood of up to 30 neighbors, where the probability that a customer exiting one server

goes to a neighbor is 0.65. t Finally, a customer goes to a random queue with probability

0.10 and back to the same queue with probability 0.10.

For the Qnet simulation, the default mapping of simulation objects to processors is so-

called block partitioning. SpecificMly, n objects are allocated to p processors by placing the

first (by global id) n/p objects on the first processor, the next n/p objects on the second

processor, and so forth.

As we conducted our investigation, we were surprised to discover that in the SPEEDES

implementation on the Intel Paragon, there is very little difference between the overall com-

munication cost of placing two objects on the same processor or separating them. As a

consequence, any method that balances the workload well will perform well in this context.

It is unrealistic to expect this to be true either on other architectures or with different

simulation testbeds. For the purposes of exploring the effectiveness of the algorithms in

such situations, we parametrically inflate the interprocessor communication costs by adding

a timed delay to the posting of each interprocessor event. For the Qnet simulation, we
examined three different cases:

• Qnet #1: delay = 0 msec, 50 initial customers per server, simulated execution time
= 1500 seconds

• Qnet #2: delay = 10 msec, 25 initial customers per server, simulated execution time
= 250 seconds

tNote that if Server A is a neighbor of Server B, Server B is not necessarily a neighbor of Server A.

5

• Qnet #3: delay = 15 msec, 25 initial customers per server, simulated execution time
= 250 seconds.

To put these delays in perspective, the time required to execute a SPEEDES event on the

Paragon is approximately 1 msec. Thus, the 10 and 15 msec delays represent the sorts of rel-

ative network delays one might see with medium-grained workloads running on a workstation

cluster or fine-grained workloads on a large-scale parallel architecture.

For the simulations discussed in this paper, we used the optimistic Breathing Time Warp

(BTW) synchronization protocol [4] that combines the Time Warp and Breathing Time

Buckets protocols. At the beginning of each global virtual time (GVT) cycle, messages are

sent aggressively using Time Warp. Later in the cycle, all messages are sent risk-free using

Breathing Time Buckets. Two run-time parameters in SPEEDES determine the amount of

risk in the BTW protocol: Nrisk and Nopt. For the first Nrisk events processed after the

last GVT computation, messages are released immediately to the receiver (Time Warp). For

the events from Nrisk to Nopt (where Nrisk < Nopt), event messages are cached locally and

the event horizon is computed (Breathing Time Buckets).

The Breathing Time Warp parameters used for Qnet Simulation #1 were Nrisk = 1500

and Nopt = 3000. For Qnet Simulations #2 and #3, the parameters were Nrisk = 75 and

Nopt = 150. These parameters were determined by conducting various runs of the Qnet

simulation (using the default partitioning) on different numbers of processors. Overall, these

parameters gave the shortest execution times.

Figure 2 presents results for Qnet #1. Notice that when eight or more processors are used,

the automated load-balancing schemes give results that are noticeably better than the default

partitioning, while the two linear-ordering mappings (LBalloc2 and LBalloc3) give almost

identical results. When four processors are used, LBallocl and the default partitioning

yield the fastest execution time and yield significantly better performance than LBalloc2

and LBalloc3. This occurs because LBalloc2 and LBalloc3 are constrained somewhat from

balancing load, based on their linear orders. Yet, with few processors the communication

load is inconsequential compared to the computation load. The situation changes though as

the number of processors is increased. The mappings that explicitly balance load are nearly

identical in performance and leave the default performing rather poorly. Also, notice the

relatively large difference between LBalloc2 and LBalloc3 at four processors. Here we see the

effects of LBalloc2 naively clumping hot spots together in the linear order, making it harder

to distribute the workload evenly. Surprisingly, the effects of this mishap are mitigated

though by increasing the number of processors. However, for the case of four processors,

the Gaussian-based weighting of communication costs in LBalloc3 significantly reduces the

hot-spot clumping.

Figure 3 presents results for Qnet #2, where the sending of interprocessor messages is

delayed by 10 msec. When four processors are used, the default and LBallocl yield mappings

that are noticeably worse than those of the communication-sensitive mappers LBalloc2 and

LBalloc3. With larger numbers of processors, the results for LBalloc2 and LBalloc3 are very

similar and, owing to their sensitivity to communication costs, are noticeably better than
those for LBallocl.

Figure 4 demonstrates the effect of even larger communication costs when large numbers

of processors are used. When 24 processors are used, LBalloc3 is 10 seconds faster--about

350_ , , , , , ;efault-_---

300 _ LBallocl --_.....
[i_/ LBalloc2 -o--

_ 250 I_1 LBalloc3 -_--.

"__ 150 I "_,..

_ t _10050 _ _"

0 I I I I I I I

4 8 12 16 24 32 48 64

Processors

Figure 2: Results for Qnet #1 (delay = 0 msec)

800

700

_, 600

v

o 500

[" 400
O

300
O
O

m 200

100

' ' ' ' ' ;efault -a---

LBallocl --a.....

LBalloc2 -0--

I _'"_"" a, LBalloc3 -_--.

0
4 8 12 16 24 32 48 64

Processors

Figure 3: Results for Qnet #2 (delay = 10 msec)

5%--than LBalloc2, which indicates that someimprovementwasmadeby breakingup some
of the hot spots. In general,there is little differencebetweenLBalloc2 and LBalloc3. Both
providemarkedly better performancethan eitherof the communication-costinsensitivemap-
pings.

_D

o

O
_D

500 , , ,

450 Default -_---
... LBallocl --_.....

400 "- LBalloc2

350 - LBalloc3

300 "'.. '"_..."'-..

250_--..'_-...............

150 f

100

50

0 I I I

16 24 32 48

Processors

64

Figure 4: Results for Qnet _3 (delay = 15 msec)

4.2 DPAT: A Model of the National Airspace System

For the last several years, the MITRE Corporation has been studying the National Airspace

System (NAS), which encompasses all commercial and general aviation air traffic in the

United States [7]. On a typical day, the NAS consists of 45,000 to 50,000 flights from

approximately 16,000 airfields. The commercial air traffic is handled by roughly 1000 airports

while 80% of the general aviation traffic is handled by the top 500 airports. In addition to

the airfields, the NAS contains 701 three-dimensional regions called sectors that cover the

airspace between airports.

MITRE recently developed a PDES model of the NAS called DPAT (Detailed Policy

Assessment Tool) that is used to examine the average delay encountered by aircraft under

various weather and traffic conditions. As discussed in [7], the physical NAS system is a

good candidate for PDES because the aircraft, air traffic controllers, and airports operate

naturally in parallel.

The DPAT model contains SPEEDES simulation objects for 520 airports and 701 sectors.

Events in the system include takeoffs, landings, and transfers of aircraft between sectors.

Scheduling data from the Official Airlines Guide (OAG) is used to schedule commercial

flights while general aviation flights are scheduled stochastically. Details of this model can

be found in [7].

The DPAT simulation begins by reading in large files of flight and airplane data to initial-

ize system parameters and schedule initial events. When we first executed DPAT on the Intel

Paragon, we encountered severe performance problems due to memory paging. In particular,

the aggregatesizeof the executableand data exceededthe roughly 23 MBytes per nodeof

user-available memory. After discussing the problem with MITRE, we modified the program

to use a subset of the aircraft data. This modification eliminated the memory problems

(when multiple processors were used) without reducing the amount of computational work

required.

The DPAT simulation organizes the airports and airspace sectors into geographic group-

ings called centers. For example, the La Guardia, Kennedy, and Newark airports in New

York and New Jersey belong to a center that contains the airspace sectors around those

airports. The Los Angeles and San Francisco airports belong to different centers because of

the distance (and number of other airports) between them. These geographic centers form

the basis for DPAT's default partitioning of simulation objects to processors.

Given that a flight must travel through contiguous sectors between airports, it is logical to

assume that a geographical partitioning of the airports and sectors will reduce communication

costs. The problem, however, is that the geographic distribution may not result in an even

distribution of work. With DPAT, the airports and sectors are divided among 22 centers,

where the "laziest" center is associated with 421 events and the busiest center has 20963.

Even if more than 9.2 processors are used, only 22 will receive work. This center-based

approach serves as the default mapping for DPAT.

We executed DPAT on the Intel Paragon using the default partitioning and the three au-

tomated algorithms. To determine the effect of interprocessor communication, we evaluated
two scenarios:

• DPAT #1: delay = 0 msec

• DPAT #2: delay = 10 msec.

For consistency, all of the runs were initially taken with Nrisk = 250 and Nopt = 500, which

were determined from the best timings of the default partitioning.

Figure 5 presents results for DPAT #1 in which no additional communication delays

were added. Notice that LBallocl gives the best overall results while LBalloc2 and LBalloc3

give very similar results. Table 1 presents a comparison of LBallocl and LBalloc2 data for

DPAT #1. Notice that the difference in their respective bottleneck weights (measured as

the largest number of committed events executed on any processor) gradually increases with

the number of processors. Furthermore, notice the dramatic difference between LBallocl

and LBalloc2 in the total number of off-processor messages. In this case, the execution time

corresponds directly with the maximum computation weight of a processor, and reducing

the number of off-node messages has little or no effect. This data indicates that there is little

difference in SPEEDES (on the Paragon) between the costs for on-processor and off-processor
communication.

As mentioned earlier, we initially ran DPAT using Nrisk = 250 and Nopt = 500. When

we added a communication delay of 10 msec, we had trouble running DPAT on large numbers

of processors because the number of optimistically processed events grew much faster than

the number of committed events, resulting in memory problems on the Paragon. Figure 6

presents results for the combinations that were able to run to completion using the initial

parameters. In Figure 7, we present additional results that were obtained by modifying the

parameters for runs with 32 or more processors. Specifically, we reduced Nrisk and Nopt

250 , , , , ,

Default -a--.

"_ LBallocl --_.....
200 I'_ LBalloc2 -o--

t_ LBalloc3 -_--.
150

50

0 1 I I I I I I

4 8 12 16 24 32 48 64

Processors

Figure 5: Results for DPAT #1 (delay = 0 msec)

Table 1" Comparison of LBallocl and LBalloc2 for DPAT #1

#
Proc.

4

8

12

16

24

32

48

64

Max. Comp. Weight a Off-Node Messages Exec. Time (sec)
LBallocl LBalloc2 LBallocl LBalloc2 LBallocl LBalloc2

121,474 121,538 179,222 54,510 221.8 230.3

60,739 61,241 205,711 74,075 126.3 139.0

40,496 40,818 228,322 85,096 99.9 110.8

30,374 30,787 235,065 102,734 84.1 95.0

20,253 20,682 261,144 113,984 71.6 77.4

15,194 16,009 285,942 141,032 64.7 70.1

10,142 10,732 334,786 175,977 57.4 59.4

7,611 8,446 388,998 218,582 54.1 57.5

aComputational workload is measured as the maximum number of committed events executed by any
one processor.

10

until we could get all four versions to run for a particular number of processors. For 32 and

48 processors, we used Nrisk = 250 and Nopt = 400. For 64 processors, we used Nrisk = 150

and Nopt = 200.

In Figures 6 and 7, the results obtained by LBalloc2 and LBalloc3 are significantly better

than those obtained by LBallocl or the default (center-based) partitioning. These results

confirm the significance of minimizing communication when communication costs are high.

Finally, notice that LBalloc3 has a slight advantage over LBalloc2 when large numbers of

processors are used, probably because the hot spots are more evenly distributed among the

processors.

00 I i I I I I

II Default' -_---

600 _, LBallocl --e.....
I_ LBaUoc2 --o--

_ 500L\ LBalloc3 -_--.

._ 300 ."-A.xl_l. "'-._

200

100

0 I I I 1

4 8 12 16 24

Figure 6: Results for DPAT #2

I I

32 48 64

Processors

(delay = 10 msec)

"5"

o

o

o

m

700

600

500

400

300

200

100

0
4

i I I I I I I

_, Default -a---
• LBallocl --_.....

LBalloc2 _--
_ _ LBalloc3 -_--.

?'""_b. -A.

III ! I I

8 12 16 24 32 48

Processors

Figure 7: Results for Modified DPAT #2 (delay = 10 msec)

11

5 Mapping Algorithm Execution Time

If we are to use any of these mapping algorithms at run-time, we must consider the costs

of doing so. Towards this end, we considered the execution time required to produce the

mappings for LBallocl, LBalloc2, and LBalloc3 on the DPAT benchmark (where approx-

imately 1200 objects are mapped). More or less regardless of the number of processors

targeted, LBallocl required 1/lOth of a second, LBalloc2 required 33 seconds, and LBalloc3

required 39 seconds. Measuring the various contributions to this cost, we discovered that

the dominant cost is due to pairings between simulation objects. If either method is to be

implemented at run time clearly more work is needed to intelligently cut down on the number

of pairings considered, both from the point of view of computation time, and from the point

of view of transporting the communication measurements to the processor responsible for

executing the mapping routine. On the other hand, LBallocl is sufficiently fast to use at run

time, and requires much less information. At least for SPEEDES on the Paragon, LBallocl

is clearly the mapping algorithm of choice. However, since the dominant cost of LBalloc2

and LBalloc3 is in the linearization (the workload balancing part is very fast), one might

only consider the linearization part very infrequently, but balance workload more frequently

(this is the approach used in [3]). It is also important to note that half a minute execution

time is notable only in the context of repeated application at run time. When used as we

have--once, at initialization--half a minute is a minor cost.

6 Conclusions

We have studied the suitability of various mapping algorithms for automated mapping of

SPEEDES models. One algorithm, LBallocl, is a well-known multiprocessor scheduling

algorithm and ignores any information concerning communication costs between objects.

LBalloc2 explicitly considers communication costs by constructing a linear ordering of ob-

jects wherein objects that communicate heavily tend to be close to each other in the ordering.

The linear ordering is then partitioned subject to a constraint that only contiguous subchains

be mapped to processors; subject to this constraint, we efficiently find the mapping that min-

imizes the computational workload of the most heavily-loaded processor. LBalloc3 corrects

the possibility of "hot spots" producing bad linearizations in LBalloc2.

Our experiences on a large queuing network model and on a realistic model of the Na-

tional Airspace System show that for SPEEDES on the Paragon, LBallocl is clearly the

mapping algorithm of choice. While it does not explicitly consider communication costs,

there evidently is very little difference in SPEEDES on the Paragon between the cost of

interprocessor and intraprocessor message passing. Furthermore, LBallocl is fast enough to

be repeatedly called in a dynamic remapping context. However, whatever the cause of this

lack of distinction between on-processor and off-processor messaging, one cannot expect it

to hold true for other tools and/or other architectures. By artificially increasing the commu-

nication cost for interprocessor messages, we studied the benefit of LBalloc2 and LBalloc3

in communication-sensitive contexts. While we did find instances where LBalloc3 improved

upon LBalloc2, for the most part the differences were slight. However, in the presence of

significant communication delays, they do both provide substantially better mappings than

12

communication-blindmappings. However,in their presentimplementation, the execution
time used to produce a linear ordering is too high to be consideredexcept for very long
running simulations.

Future workwill involvecomingto understandthe reasonfor SPEEDEScommunication-
costinsensitivity on the Paragon,and implementingdynamicobject migration in SPEEDES.

References

[1] R. L. Graham, "Bounds on Multiprocessing Timing Anomalies", SIAM Journal of Ap-

plied Mathematics, Vol. 17, No. 2, pp. 416-419, March 1969.

[2] D. M. Nicol, "Parallel Discrete-Event Simulation of FCFS Stochastic Queuing Net-

works", Proceedings ACM/SIGPLAN PPEALS 1988: Experiences with Applications,

Languages and Systems, pp. 124-137.

[3] D. M. Nicol and W. Mao, "Automated Parallelization of Timed Petri-Net Simulations",

Journal of Parallel and Distributed Computing, Vol. 29, No. 1, pp. 60-74, August, 1995.

[4] J. Steinman, "Breathing Time Warp", Proceedings of the 1993 Workshop on Parallel

and Distributed Simulation (PADS '93), pp. 109-118, July 1993.

[5] J. Steinman, "SPEEDES: A Multiple-Synchronization Environment for Parallel

Discrete-Event Simulation", International Journal in Computer Simulation, Vol. 2,

No. 3, pp. 251-286, 1992.

[6] J. Steinman, "SPEEDES: Synchronous Parallel Environment for Emulation and Dis-

crete Event Simulation", Proceedings of the SCS Multiconference on Advances in Parallel

and Distributed Simulation, SCS Simulation Series, Vol. 23, No. 1, pp. 95-103, January,
1991.

[7]F. Wieland, E. Blair, and T. Zukas, "Parallel Discrete-Event Simulation (PDES): A

Case Study in Design, Development, and Performance Using SPEEDES", Proceedings

of the 9th Workshop on Parallel and Distributed Simulation (PADS '95), pp. 103-110,
June 1995.

[8] L. F. Wilson and D. M. Nicol, "Automated Load Balancing in SPEEDES", Proceedings

of the 1995 Winter Simulation Conference, December, 1995.

13

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of informatlon,including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE

November 1995

4. TITLE AND SUBTITLE

EXPERIMENTS IN AUTOMATED LOAD BALANCING

6. AUTHOR(S)
Linda F. Wilson

David M. Nicol

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Marl Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 95-80

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-198241

ICASE Report No. 95-80

]l. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

Submitted to PADS '96: 10th Workshop on Parallel and Distributed Simulation

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 60, 61

13. ABSTRACT (Maximum 200 words)

One of the promises of paraltelized discrete-event simulation is that it might provide significant speedups over se-
quential simulation. In reality, high performance cannot be achieved unless the system is fine-tuned to balance

computation, communication, and synchronization requirements. As a result, parallel discrete-event simulation

needs tools to automate the tuning process with little or no modification to the user's simulation code.

In this paper, we discuss our experiments in automated load balancing using the SPEEDES simulation frame-

work. Specifically, we examine three mapping algorithms that use run-time measurements. Using simulation models

of queuing networks and the National Airspace System, we investigate (i) the use of run-time data to guide mapping,

(ii) the utility of considering communication costs in a mapping algorithm, (iii) the degree to which computational

"hot-spots" ought to be broken up in the linearization, and (iv) the relative execution costs of the different algorithms.

14. SUBJECT TERMS

parallel processing; parallel simulation; discrete-event simulation; load balancing

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATIOE 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

15

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-I02

